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ABSTRACT 

We prove two results about the quotient over the asymptotic density zero 
ideal. First, it is forcing equivalent to 7~(l~I)/Fin*~r where 7~c is the 
homogeneous probability measure algebra of character c. Second, if it 
has analytic Hausdorff gaps, then they look considerably different from 
previously known gaps of this form. 

Introduct ion  

We consider d e n s i t y  ideals ,  ideals of the form Z~ --- {A I limsuPn #n(A) = 0} 
for a sequence ~t m (m E N) of probabil i ty measures concentra t ing on pairwise 

disjoint intervals Im (m E N) of N. In  Theorem 1.3 we prove tha t  the reg- 

ular open algebra of such quotient  is isomorphic to  the regular open algebra 

of  P ( N ) / F i n . T Q .  S tudy of  quotients 7)(N)/ / :  as forcing notions has recently 

a t t rac ted  a bit of a t tent ion ([1], [12], [8]). 

In [19] it was proved tha t  there are no analyt ic  Hausdorff  gaps over Fin. 

Todorcevic actually proved tha t  every pregap A, B over Fin such tha t  ,4 is 

analytic and B / F i n  is a-directed can be countably  separated (and more). In  [3, 

Theorem 5.7.1, Theorem 5.7.2 and Lemma 5.8.7] we have proved tha t  Fin is the 
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only analytic P-ideal that  has this property: If Z is an analytic P-ideal that  is 

not Rudin-Keisler isomorphic to Fin, then there is a gap ,4, B over 27 such that  

,4 and B are Borel, B/Z is a-directed and ,4 is not countably separated from B. 

In [4] it was proved that  there are analytic Hausdorff gaps over any dense F~ 

P-ideal. Recall that  

Z0 = {A c_ N:  limsuplANn[/n = 0} 
n 

is the ideal of asymptotic density zero sets. In w we prove results on the struc- 

ture of analytic Hausdorff gaps in its quotients, making some progress towards 

[3, Question 5.13.7] and [4, Question 8a and Question 10]. 

In Proposition 3.2 we show that  if Z is a dense analytic P-ideal without 

analytic Hausdorff gaps in its quotient, then the restriction of Z to some positive 

set is a generalized density ideal. This gives a partial solution to the problem of 

characterizing those analytic P-ideals that  do not have analytic Hausdorff gaps 

in their quotients ([3, Problem 5.13.5]; see also Question 4.1). 

TERMINOLOGY. Our terminology and notation follow [3]. Two families `4, B 

in a quotient P ( N ) / Z  form a p r e g a p  if A M B E Z for all A C A and B E B. 

A pregap is s e p a r a t e d  (or spl i t )  by C C_ N if for every A E ,4 and B E B 

we have A \ C  E Z a n d  B N C  E Z. I f a p r e g a p i s  not separated by any C, 

then it is a gap.  We also say that  ,4 and B form a gap ove r  Z. A pregap is 

c o u n t a b l y  s e p a r a t e d  if there are sets Cn C N (n E N) such that  for every 

A E , 4 a n d B E B t h e r e i s n s u c h t h a t  A \ C n  E Z a n d B M C n  c27. A g a p i s  

H a u s d o r f f  if both of its sides ,4 and B are countably directed under inclusion 

modulo Z. A gap is a n a l y t i c  if ,4 and B are analytic subsets of :P(N), taken 

with its Cantor-set topology. 

An ideal Z on N is a P - i dea l  if for every sequence An of sets in Z there is 

A E Z such that  An \ A is finite for all n. An ideal Z is d e n s e  if every infinite 

A C N has an infinite subset in Z. 

A function r defined on the power-set of some set I is a s u b m e a s u r e  if 

r162 = 0, it is monotonic (A C_ B implies r _ r  and subadditive 

(r  < r162  We say that  r is a s u b m e a s u r e  on  I. A submeasure 

on P(N) is lower  s e m i c o n t l n u o u s  if for all A we have r -- sup r where 

s ranges over all finite subsets of A. In this case 

Exh(r -- {A[ l imsupr  \ n) = 0} 
n 

is an analytic P-ideal, and all analytic P-ideals are of this form ([16]). 
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Fin is the ideal of all finite subsets of N. Ideals I and J are R u b i n - K e i s l e r  

i s o m o r p h i c  if there are A E I ,  B E J ,  and a bijection h: N \ A --* N \ B such 

that  h-l(C)  C I if and only i f C  E J for all C E N \ B .  

If N -- Un In is a parti t ion into finite intervals and Cn is a submeasure on In, 

then 

Zr = {A c_ N[ l imsupCn(A N In) = 0} 
n 

is a typical g e n e r a l i z e d  d e n s i t y  idea l  (see [3, w These ideals are Fo~ 

subsets of P(N) (when taken in its natural  Cantor-set topology). Each Zr is a 

P-ideal, and it is dense if and only if limsup~ supn r = 0. 

If each Cn is a measure Vn, then Z~ is a d e n s i t y  ideal .  It  is an E U - i d e a l  if it 

is dense and ~'n(In) = 1 for all n. This is not the original definition given in [14], 

but in [3, Theorem 1.13.3 (b)] the two conditions were proved to be equivalent. 

By [3, p. 48] Z0 is an EU-ideal and a density ideal Z .  is an EU-ideal if and only 

if supn v~(In) < oo. 

ACKNOWLEDGEMENTS: I would like to thank Juris SteprEns for many 

conversations, one of which resulted in Theorem 1.3, as well as for his kind 

permission to include his part  of the proof of this theorem. I would also like to 

thank David Fremlin for pointing out that  Lemma 1.2 does not necessarily hold 

for an arbitrary ultrafilter. 

1. U l t r a p r o d u c t s  o f  m e a s u r e  a l g e b r a s  

By [C] ~176 we denote the family of all infinite subsets of C. In this section C 

will always stand for an iiffinite subset of l~. For n C N let C/n = C \ (n q- 1). 

A family ~" C [N] ~176 is d e n s e  if for every C E IN] ~176 we have ~ A [C] ~176 ~ ~. 

An ultrafilter/d on N is s e l ec t i ve  if it intersects every dense analytic subset of 

[N] ~176 By the localized version of Silver's theorem due to Mathias ([15]) this is 

equivalent to the standard definition of a selective ultrafilter. 

Lemma 1.2 is well-known. Tim use of a selective ultrafilter in the context of 

Loeb measure dates back to [11] and it was studied in [2]. 

LEMMA 1.1: Assume An is a finite Boolean algebra with submeasure Cn and ld 

is a selective ultrafilter. On the ultraproduct A = ([In An)/ld define 

r = lira Cm(Vm). 
m--* /d  

Then Cu is a eountably subadditive submeasure. 
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Proof: Clearly Cu is a well-defined submeasure on A. We first prove Cu is 
countably subadditive. Pick B n E A (n E N) so that Cu(B n N B m) = 0 for 

m r n. Write B n = (Bn)/ /4 (where B~ E Ai). The families 

n < i  n < i  

and 
~n = { C :  (Vi C C ) [ u i ( B . ~ ) - ~ ( B n ) [  < 2 - i n  -1} 

are dense in IN] ~ Since /4 is selective, we can pick C E /4 N 7) such that 
C / n  E J:n for all n. Let mi (i C N) be an increasing enumeration of C. Define 
B = [Bk]u by Bm,+l = (An<m, Bn and Bk - ~ for k ~ C. Then B D B n for m~+l  

all n, and for all pairs i < j in C we have 

C j ( B j ) - r  < C j ( B j ) - r  -i+1, 

n n hence r  = limi--.u r -- limn r )). | 

The finiteness of algebras An can obviously be replaced by the appropriate 
completeness assumption. It is not difficult to see that the algebra A/Nul l ( r  
does not have to be a-complete in general. 

LEMMA 1.2: Assume (An,Un) are probability measure algebras and /4 is a 

selective ultrafilter. Then uu is a countably additive probability measure and 

the quotient A/Null(v~) is a measure algebra. 

Proof: Clearly ~ is a finitely additive probability measure on A, so A/Null(~u) 
is ccc. By Lemma 1.1, uu is countably subadditive. Being in addition finitely 

additive, it is countably additive. 
Let B n and B be as in the proof of Lemma 1.1. In order to prove A/Null(uu) 

is a-complete, it will suffice to check that B is the supremum of Bi. For A E 

A I-Ii=l n write A = [A]Null(uu). We need to check/~ = Vn/~n in A/Null(uu).  
Indeed, 2 is immediate since/~ p /~n  for all n. To prove the reverse inclusion, 

note that D C_ /} and /)  ~ /~ implies v~(D) < ~u(B). Then if m is large 

enough so that 1214(Un< m B n) > uu(D), we have (An<m/~n \ D r 0A. Since D 
was arbitrary, this implies/~ = Vn/~n. 

By ccc-ness, the algebra is complete and therefore a measure algebra. | 

Let T~c denote the homogeneous probability measure algebra of Maharam 

character c (see, e.g., [9]). The forcing terminology used in the proof of 
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Theorem 1.3 is standard. Neither forcing nor this theorem will be used elsewhere 

in this note. 

THEOREM 1.3: I f2: .  is an EU-ideal, then the regular open algebras of T)(N)/Z~ 
and P ( N ) / F i n  *T~c are isomorphic. 

First we prove a lemnm. An ideal 2; is p r o p e r  if N ~ 2:. 

LEMMA 1.4: I f  Zr is a proper generalized density ideal, then P ( N ) / F i n  

regularly embeds into P(N) /Zr  

Proof: The assumption that  2:r is proper is equivalent to limsupn Ca(In) > 
0. We may assume liminfnr > 0, by possibly joining some of the Ins 
(see [3, w Let h be a function that  collapses In to n. We claim that  

[A]Fin ~-* [h-l(A)]zo is a regular embedding. (Here [A]z is the 2:-equivalence 

class of A C_ N.) It is clearly a homomorphism of Boolean algebras, and since 

liminfn Ca(In) > 0 it is also an embedding. Fix a maximal antichain .4 in 

P (N) /F in .  We need to prove that  {h-I(A)IA e A} is maximal over 2:r For 

C E Z + there is ~ > 0 such that the set {nlCn(C ) > g} is infinite. By the 

maximality of A, this set has an infinite intersection with some A C ~4, hence 

h -1 (A) n C ~ 2:r | 

Proof of Theorem 1.3: We find a regular embedding o f P ( N ) / F i n  into P(N) /Z~  

such that  7~(N)/Fin forces that  the quotient is an atomless measure algebra. 

The character of this algebra is not bigger than its size, c. This suffices since 

7~c regularly embeds into P(N) /Z~  by [10, Proposition 491P]. Let h: N --* N be 

a function that  collapses In to n. By Lemma 1.4, the mapping A H h-l(A) is 

a regular embedding of T ' (N)/Fin  into P(N)/Zu. Let G be the canonical name 

for some 7~(N)/Fin-generic ultrafilter. Recall that  7~(N)/Fin adds no reals and 

forces that  G is selective ([15]). 

It remains to check that  P ( N ) / F i n  forces (P(N)/Zu)/G is isomorphic to 7~,. 

We will be using the terminology of Lemma 1.4. First prove that  7~(N)/Fin 

forces (7~(N)/2:u)/G and (1-in 7)(In)/G)/Null(ua) are isomorphic. Pick subsets 

B and C of N. Identifying 7~(N) with [In P(In), write Bn = B n In and 

Cn = C n In. Then B/G = C/G if and only if limn--,a un(BnACn) = 0 if and 

only if .a([B]aA[C]a) = 0. Since a is forced to be a selective ultrafilter, by 

Lemma 1.4, the conclusion follows. | 

Under CH it is even true that  all quotients over EU-ideals are pairwise 

isomorphic ([14], [5]). However, under Todorcevic's OCA there are many 
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pairwise nonisomorphic quotients over the ideals in this class (this was first 

proved by Just  [13]; see also [3] and [7]). 

2. G a p s  o v e r  d e n s i t y  idea l s  

In this section we prove a structure result on analytic Hausdorff gaps over density 

ideals. A pregap `4,B in the quotient over Zr (given by In,r for n E 5]) is 

s i m p l e  if there are submeasures am, rm concentrating on Im such that  .4 = Za 

and B = Zr .  If `4, B and `4~, B' are pregaps in the same algebra, we say that  

`4, B is i n c l u d e d  in `4~, B t if ,4 C .4 ~ and B C_ B ~. Fix a generalized density 

ideal Zr with witnesses Cn and In, n E N, throughout this section. 

THEOREM 2.1: Every analytic Hausdorff pregap in the quotient over any Z~ is 

included in a simple pregap. 

Proof: Both A and B are analytic P-ideals. By [16], A -- Exh(o-) and B = 

Exh(r )  for some lower semicontinuous submeasures o. and ~-. Define am and ~'m 

by 

o.m(C) = a(C M In)  and Tin(C) = T(C M Ira), 

and let `4' = Za, B' = Zr. 

CLAIM 2,2: We have ,,4 ~ D ,,4 and B' D B. 

Proof: For ,4' _D ,4 it suffices to prove that  supra o-m _< o-. But this follows 

from o.m <_ o. for all m. The proof that  B' _D B is analogous. I 

CLAIM 2.3: The families A ~ and B' are orthogonal over Zr 

Proof: We need to check tha t  ,4' M B' C Zr Assume this fails, and fix X E 

(,4' (7 B') \ Zr Let Xm = X M Ira. Since X ~ Zr there is an E > 0 such that  

Cm(Xm) _> ~ for infinitely many m. We may assume this holds for all m. If  we 

write 

Ic  = U Ira, X c  = X N Ic,  
m E C  

then for every infinite C C N we have X c  ~ Zr Since A M B c_ Zr we have 

X c  ~ ,4 M B for every such C. We may find an infinite Co and Q E {,4, B} such 

tha t  {D �9 [C0] s~ : XD r Q} is dense in [C] ~~ (dense in the forcing sense every 

set has an infinite subset in this set). We may assume that  Q = ,4 and (since 

,4 is hereditary) that  X MID r ,4 for all D �9 [Co] ~~ For D C N let 

aD = liminf o.(XD \ k) 
k 
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and note that  aD > 0 since XD ~ `4. Since C C* D implies ac  <_ OlD and 

([N] ~~ 2*) is countably directed, for some C1 �9 [Co] ~~ we have o~ D : O/c l  = (~ 

for all D �9 [C1] ~~ By the above 6 > 0. 

But am(X) = a(Xm) --* 0 as m --* oo, so we can find C2 C C1 such that  

~mec2 a(Xm) < 6/2. Then a(Xc2) < 6/2, a contradiction. | 

By the above claims, `4~ and B r form a simple pregap that  includes .4, B. 

Clearly, if .4, B is a gap then ,4 ~, B t is a gap as well. | 

By the following result, analytic Hausdorff gaps over EU-ideals (if they exist) 

must be rather different from known analytic Hausdorff gaps (see the proof of 

[4, Lemma 2]). 

THEOREM 2.4: Assume Z .  is an EU-ideal and ,4,13 is an analytic Hausdorff 

pregap in its quotient. Then every infinite Y C_ N has an int/nite subset X such 
that A, B is separated on Unex In. 

Proof." Assume .4, B is an analytic Hausdorff gap over Z~. By Theorem 2.1 we 

may assume ,4, B is a simple gap given by submeasures am, Tm (m �9 N ) .  Since 

7~(N)/Fin adds a selective ultrafilter without adding reals, and therefore without 

splitting gaps, we may assume there exists a selective ultrafilter/d concentrating 

on Y. Let 

and define uu on A as in Lemma 1.2. Identify D C 1N with the element 

(D A I n :  n �9 N} of [ In  P( /n ) ,  and let 

Au = {[d]u : A �9 `4} and Bu = {[B]u : B �9 13}. 

These two families form a pregap in A/Nul l (vu) .  By Lemma 1.2, the algebra 

A/Nul l (~u)  is a measure algebra and therefore some [W]u splits the pregap. 

Let Wn = W N/~ and for each k define 

Xk = {alan(In \ Wn) <_ 1/k and Tn(Wn) <_ 1/k}. 

Then Xk E /d  for all k, and since/d is selective we can find X E U such that  

X \ Xk is finite for all k. Then X is clearly as required. | 
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3. On  q u o t i e n t s  w i t h o u t  a n a l y t i c  H a u s d o r f f  gaps  

We prove that  if an analytic P-ideal Z is dense and does not have analytic 

Hausdorff gaps in its quotient, then its restriction to some positive set is a 

generalized density ideal. This improves the main result of [4] that every dense 

Fa P-ideal has such a gap in its quotient since a dense generalized density ideal 

cannot be Fo. To this effect we prove a slight 

strengthening of [4, Lemma 2]. 

LEMMA 3.1: Assume Z = Exh(r is a dense analytic P-ideal and Ii (i E N) are 

finite pairwise disjoint sets such that for some e > 0 and a > 0 we have 

(1) (Vn)(VS C Ui~176 Ii)((Vi > n)r \ S) < e 
=~ (3B C S)(Vi)r rl I~) < 1In A r > a)). 

Then there is an analytic Hausdorff gap over Z. 

Proof: By replacing r with r we may assume a = 1. Recursively find an 

increasing sequence nk (k E N) so that  for every k we have (let Jk = [nk, nk+:)) 
(2) (vs c_ Ii)(vi �9 Jk)r \ s) < 

(qB C S)(Vi)(r N//)  < 1/k 2) A r  > i). 
If n : , . . . ,  nk are as required, let T be the family of all pairs (S,p) so that  p > nk, 
S C  P Ui=nk// ,  r \ S) < e for all i C Ink,p], but for every B C_ S such that  

(Vi)r < 1/k 2 we have r  <_ 1. Order T by (S,p) -< (U,1) if and only 

if p < l and U r~ Ii = S NIi  for all i <_ p. Then T is a finitely branching tree. 

An infinite branch of T would give some S contradicting the assumption (2), 

since r is lower semicontinuous. By Khnig's lemma, 

nk+l = sup{p + 2[q(S,p) �9 T} 

is finite and satisfies (2). From this point on we follow the proof of [4, Lemma 

2] rather closely. 

For A C_ N and n E N define submeasures an(A) = [{j E Jn : A N I i # r 

and fin(A) = sup je j ,  r ~ Ij) ,  then let 

a(A) = ~ as(A) and /3(A) = supn. /3n(A).  
n nEN n = l  

Both a and ~3 are lower semicontinuous. We will prove that `4 = Exh(a)  and 

B -- Exh(~) form an analytic Hausdorff gap. Since both are clearly analytic 

P-ideals, we need only prove that  ,4 and B are Exh(r and that  they 

are not separated by a single set over Exh(r 
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In order to prove .4 and B are Exh(r note that  for A, B C N we 

have 
o o  o o  

i ,) < ~ c~,~(A) . (n. l~n(B)) <_ c~(A) . t3(B). r  _< ~ r  _ n 
n = l  n = l  

If A E A and B E B, then a(A) < oo and l i m m - ~  13(B \ Unto__1 J~) = 0, thus by 

the above limt__.~ r n B) \ [1,1)) = 0, and A n B E Exh(r as required. 

Assume `4 and B are separated over Exh(r by C C_ N. Then A \ C e Exh(r 

and B n C E Exh(r for all A E `4 and all B E B. We claim that  

(3) limn--,~ SUPm>_n,jej,, r \ C) = O. 
Otherwise, we may find an infinite X C_ N, e > 0, and a 'choice function' 

f E [ I ne x  Jn such that  

for all n E X. We may furthermore shrink X so that  ~ n e Z  1In < oo. Let 

A = U~ex Is(n) \ C; then c~(A) _< ~ n e x  1/n < oo, thus A E `4. Note that  

A N C = ~. However, for n E X we have r N U i e J , / / )  > r N//(n))  > e, 

therefore A ~ Exh(r contradicting the assumption on C. 

By (3), for all but finitely many n we have supjej"  r  \ C) < e. By (2), 

for each such n there is B~ C_ C n U~eJ,/~ such that  r O I~) < 1In 2 and 

r > 1. Then B = UneY Bn satisfies B C_ C and n'l~n(B) < 1In. Therefore 

B E/3, yet B ~ Exh(r a contradiction. This completes the proof. I 

PROPOSITION 3.2: I f  Z is an analytic P-ideal whose quotient does not have 
analytic Hausdorff gaps, then the restriction of g to some positive set is a 
generalized density ideal 

Proof: By [161 fix a lower semicontinuous submeasure r such that  Z = Exh(r 

Fix a partition of N into intervals Ii (i E N) so that  infi r  _> 1. The 

conditions of Lemma 3.1 fail when a = e = 1/m for every m E N. Hence we 
o o  may assume that  for every m E N there are n -- f (m)  and S C__ Ui=$(m) Ii such 

that  (Vi _> f (m))r  < 1/ f (m)and if B C__ S is such that  r  < 1/f(m) 
for all i, then r  _< 1/m. Fix ~ > 0 so that  5 < infi r  We may assume 

f(m) > m/5 for all m. For k E N pick Sk C_ Ui~/(2k) Ii so that  r  < 2-k~ 

for all i _> f (2  k) and 

(VB C Sk)(Vi)r N h)  < l / f ( 2  k) ~ r  < 2 -k. 

i i f ( 2 k ) - I  Let S~ = Sk U ~i=1 Ii and S = nk=l  S~. Then r \ S) < (f for all i, 

therefore S is :/-positive. 
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We claim that  {A C_ SIA E Z} = {A C_ S l l imsup i r  = 0}, and 

therefore the restriction of Z to S is a generalized density ideal. 

It will suffice to prove that  if r approaches zero then A E Z. Fix m E N. 

Find k such that  r  < 1/f(2 m) for all i _> k. Then r Ii) < 2 -m, 

and therefore A c Exh(r | 

4. C o n c l u d i n g  r e m a r k s  

The question whether there are analytic Hausdorff gaps over Z0 remains open. 

We record two of its equivalent reformulations. For terminology see [3]. 

PROPOSITION 1: Let Z be an analytic ideal. The following are equivalent. 
(a) There are analytic Hausdorff gaps over Z. 
(b) Every Baire monomorphism of the quotient over Z into an analytic 

quotient preserves all Hausdorff gaps. 
(c) Assuming OCA and MA, every monomorphism of the quotient over Z into 

an analytic quotient preserves all Hausdorff gaps. 

Proof'. Each one of (b) and (c) is equivalent to (a) by [3, Proposition 5.9.1 and 

Proposition 5.9.4]. These equivalences are also implicit in [20]. | 

Let us repeat [4, Question 9] (see [4, Lemma 2] for a partial answer). 

QUESTION 4.1: Assume a dense analytic P-ideal is equal to Exh(r for a lower 

semicontinuous submeasure satisfying r = cx~. Is there an analytic Hausdorff 
gap in its quotient? 

A simple argument using the ideas from [5, Proposition 3.3 (1) and (2)] shows 

that  if Z0 = Exh(r for a lower semicontinuous r then r < oc. 

Theorem 1.3 implies that  P(N)/Zo is a proper forcing notion. The question 

of properness of quotients :P(N)/Z as forcing notions, initiated by Balcar, has 

recently attracted considerable attention. Balcar, Herns Herns and 

H r u ~ k  ([1]) proved that  P (Q) /NWD(Q)  is proper and adds only Cohen reals. 

(Here NWD(Q) stands for the Fa~ ideal of all nowhere dense subsets of the ra- 

tionals.) Motivated by [5], Steprans ([17]) has defined a family of 2 ~~ coanalytic 

ideals whose quotients are pairwise nonequivalent proper forcing notions, each 

one being an iteration of a Sacks-like forcing and P(N) /F in .  Hrugs and Zaple- 

tal ([12]) proved theorems relating forcings 7~(N)/Z with more familiar forcings 

of the form Borel /J  for a cr-ideal J in a spirit similar to Theorem 1.3. They have 

also constructed an analytic P-ideal Z such that  the forcing P(I~)/Z collapses 

~ql, answering a question from an earlier version of this paper. 
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