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ABSTRACT

We prove two results about the quotient over the asymptotic density zero
ideal. First, it is forcing equivalent to P(N)/Fin*R., where R is the
homogeneous probability measure algebra of character ¢. Second, if it
has analytic Hausdorff gaps, then they look considerably different from
previously known gaps of this form.

Introduction

We consider density ideals, ideals of the form Z, = {A|limsup,, p,(A) = 0}
for a sequence p,, (m € N) of probability measures concentrating on pairwise
disjoint intervals I, (m € N) of N. In Theorem 1.3 we prove that the reg-
ular open algebra of such quotient is isomorphic to the regular open algebra
of P(N)/FinxR,. Study of quotients P(N)/Z as forcing notions has recently
attracted a bit of attention ([1], [12], [8]).

In [19] it was proved that there are no analytic Hausdorff gaps over Fin.
Todorcevic actually proved that every pregap A, B over Fin such that A is
analytic and B/ Fin is o-directed can be countably separated (and more). In [3,
Theorem 5.7.1, Theorem 5.7.2 and Lemma 5.8.7] we have proved that Fin is the
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only analytic P-ideal that has this property: If T is an analytic P-ideal that is
not Rudin—Keisler isomorphic to Fin, then there is a gap A, B over Z such that
A and B are Borel, B/7 is o-directed and A is not countably separated from B.

In [4] it was proved that there are analytic Hausdorff gaps over any dense F;
P-ideal. Recall that

Zy={ACN:limsup|ANn|/n=0}
n

is the ideal of asymptotic density zero sets. In §2 we prove results on the struc-
ture of analytic Hausdorff gaps in its quotients, making some progress towards
[3, Question 5.13.7] and [4, Question 8a and Question 10].

In Proposition 3.2 we show that if Z is a dense analytic P-ideal without
analytic Hausdorff gaps in its quotient, then the restriction of 7 to some positive
set is a generalized density ideal. This gives a partial solution to the problem of
characterizing those analytic P-ideals that do not have analytic Hausdorff gaps
in their quotients ([3, Problem 5.13.5]; see also Question 4.1),

TERMINOLOGY. Our terminology and notation follow [3]. Two families A, B
in a quotient P(N)/Z form a pregap if ANB € Z for all A€ Aand B € B.
A pregap is separated (or split) by C C N if for every A € Aand B € B
we have A\ C € T and BNC € Z. If a pregap is not separated by any C,
then it is a gap. We also say that A and B form a gap over Z. A pregap is
countably separated if there are sets C, C N (n € N) such that for every
A € A and B € B there is n such that A\C, € Tand BNC, € Z. A gap is
Hausdorff if both of its sides A and B are countably directed under inclusion
modulo Z. A gap is analytic if A and B are analytic subsets of P(N), taken
with its Cantor-set topology.

An ideal 7 on N is a P-ideal if for every sequence A, of sets in T there is
A € T such that A, \ A is finite for all n. An ideal 7 is dense if every infinite
A C N has an infinite subset in 7.

A function ¢ defined on the power-set of some set I is a submeasure if
#(@) = 0, it is monotonic (A C B implies ¢(A) < ¢(B)), and subadditive
(¢(AUB) < ¢(A)+¢(B)). We say that ¢ is a submeasure on I. A submeasure
on P(N) is lower semicontinuous if for all A we have ¢(A) = sup ¢(s), where
s ranges over all finite subsets of A. In this case

Exh(¢) = {4]limsup $(A4 \ n) = 0}

is an analytic P-ideal, and all analytic P-ideals are of this form ([16]).
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Fin is the ideal of all finite subsets of N. Ideals I and J are Rubin—Keisler
isomorphic if there are A € I, B € J, and a bijection h: N\ A — N\ B such
that A=1(C) € I if and only if C € J for all C € N\ B.

IfN= Un I, is a partition into finite intervals and ¢,, is a submeasure on I,
then

Zy = {A C N|limsup pp(ANI,) =0}

is a typical generalized density ideal (see [3, §13]). These ideals are Fy;
subsets of P(N) (when taken in its natural Cantor-set topology). Each Z4 is a
P-ideal, and it is dense if and only if lim sup, sup,, ¢;({n}) = 0.

If each ¢, is a measure v, then Z, is a density ideal. It is an EU-ideal if it
is dense and v, (I,) = 1 for all n. This is not the original definition given in [14],
but in [3, Theorem 1.13.3 (b)] the two conditions were proved to be equivalent.
By [3, p. 48] 2 is an EU-ideal and a density ideal 2, is an EU-ideal if and only
if sup,, v (I5,) < 0.

ACKNOWLEDGEMENTS: I would like to thank Juris Steprans for many
conversations, one of which resulted in Theorem 1.3, as well as for his kind
permission to include his part of the proof of this theorem. I would also like to
thank David Fremlin for pointing out that Lemma 1.2 does not necessarily hold
for an arbitrary ultrafilter.

1. Ultraproducts of measure algebras

By [C]*° we denote the family of all infinite subsets of C. In this section C
will always stand for an infinite subset of N. For n € Nlet C/n = C\ (n+1).
A family F C [N]* is dense if for every C € [N]* we have F N [C]™ # 0.
An ultrafilter i on N is selective if it intersects every dense analytic subset of
[N]*°. By the localized version of Silver’s theorem due to Mathias ([15]) this is
equivalent to the standard definition of a selective ultrafilter.

Lemma 1.2 is well-known. The use of a selective ultrafilter in the context of
Loeb measure dates back to [11] and it was studied in [2].

LEMMA 1.1: Assume A, is a finite Boolean algebra with submeasure ¢,, and U
is a selective ultrafilter. On the ultraproduct A = ([],, An)/U define

Sul[V) = limy érn(Vi).

Then ¢y is a countably subadditive submeasure.
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Proof: Clearly ¢y is a well-defined submeasure on A. We first prove ¢y, is
countably subadditive. Pick B" € A (n € N) so that ¢y(B" N B™) = 0 for
m # n. Write B® = (B?)/U (where B € A;). The families

< 2‘”}

D= {C 1 (Vi€ C)(Vj € C/i)| Y _vi(BY) —vi(| BY)
Fa={C: (vi € C)lm(B}) — vu(B")| < Z—in‘l}

n<i n<i

and

are dense in [N}]™. Since U is selective, we can pick C € U N D such that
C/n € F, for all n. Let m; (i € N) be an increasing enumeration of C. Define
B = [Bglu by Bm.,y =Un<m, Bm.,, and By =0 for k ¢ C. Then B 2 B" for
all n, and for all pairs i < j in C we have

¢j(Bj)—¢j(UB") ¢j(Bj)~¢j(UB?)

n<i n<i

< 427 < 27

hence ¢(B) = lim;_y ¢5(B;) = limn du (Ui, (B™))- i

The finiteness of algebras A, can obviously be replaced by the appropriate
completeness assumption. It is not difficult to see that the algebra A/ Null(¢y)
does not have to be o-complete in general.

LEMMA 1.2: Assume (A,,v,) are probability measure algebras and U is a
selective ultrafilter. Then vy is a countably additive probability measure and
the quotient A/ Null(vy) is a measure algebra.

Proof: Clearly vy is a finitely additive probability measure on A, so A/ Null(vy)
is ccc. By Lemma 1.1, vy is countably subadditive. Being in addition finitely
additive, it is countably additive.

Let B™ and B be as in the proof of Lemma 1.1. In order to prove A/ Null(vy)
is o-complete, it will suffice to check that B is the supremum of B;. For A €
T2, Ay write A = [A]lnui(s,). We need to check B =\/, B" in A/ Null(u).
Indeed, D is immediate since B D B™ for all n. To prove the reverse inclusion,
note that D C B and D # B implies vy(D) < vy(B). Then if m is large
enough so that v (U, <., B") > wu(D), we have |J,,.,, B" \ D # 04. Since D
was arbitrary, this implies B = \/, B".

n<m

By cce-ness, the algebra is complete and therefore a measure algebra. ]

Let R, denote the homogeneous probability measure algebra of Maharam
character ¢ (see, e.g., [9]). The forcing terminology used in the proof of
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Theorem 1.3 is standard. Neither forcing nor this theorem will be used elsewhere
in this note.

THEOREM 1.3: If Z, is an EU-ideal, then the regular open algebras of P(N)/Z,
and P(N)/Fin*¥R, are isomorphic.

First we prove a lemma. An ideal 7 is proper if N ¢ 7.

LEMMA 1.4: If Z4 is a proper generalized density ideal, then P(N)/Fin
regularly embeds into P(N)/Z.

Proof: The assumption that Z, is proper is equivalent to limsup,, ¢n(In) >
0. We may assume liminf, ¢,(I,) > 0, by possibly joining some of the I,s
(see [3, §13]). Let h be a function that collapses I, to n. We claim that
[Alpin — [h71(A)]z, is a regular embedding. (Here [A]7 is the Z-equivalence
class of A C N.) It is clearly a homomorphism of Boolean algebras, and since
liminf, ¢,(I,) > 0 it is also an embedding. Fix a maximal antichain A in
P(N)/Fin. We need to prove that {h™1(A)|A € A} is maximal over Z,. For
C € Z} there is € > 0 such that the set {n|¢,(C) > €} is infinite. By the
maximality of A, this set has an infinite intersection with some A € A, hence
h_l(A) nc ¢ Z¢. |

Proof of Theorem 1.3: We find a regular embedding of P(N)/ Fin into P(N)/Z,
such that P(N)/Fin forces that the quotient is an atomless measure algebra.
The character of this algebra is not bigger than its size, ¢. This suffices since
R regularly embeds into P(N)/Z, by [10, Proposition 491P]. Let h: N — N be
a function that collapses I, to n. By Lemma 1.4, the mapping A +— h™1(4) is
a regular embedding of P(N)/Fin into P(N)/Z,. Let G be the canonical name
for some P(N)/ Fin-generic ultrafilter. Recall that P(N)/Fin adds no reals and
forces that G is selective ([15]).

It remains to check that P(N)/ Fin forces (P(N)/Z,)/G is isomorphic to R..
We will be using the terminology of Lemma 1.4. First prove that P(N)/Fin
forces (P(N)/2,)/G and ([],, P(I»)/G)/ Null(vg) are isomorphic. Pick subsets
B and C of N. Identifying P(N) with [], P(I,), write B, = BN I, and
Cn =CnNI,. Then B/G = C/G if and only if lim,_,q v, (B,AC,) = 0 if and
only if vg([BlgA[C]e) = 0. Since G is forced to be a selective ultrafilter, by
Lemma 1.4, the conclusion follows. |

Under CH it is even true that all quotients over EU-ideals are pairwise
isomorphic ([14], [5]). However, under Todorcevic’s OCA there are many
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pairwise nonisomorphic quotients over the ideals in this class (this was first
proved by Just [13]; see also {3] and [7]).

2. Gaps over density ideals

In this section we prove a structure result on analytic Hausdorff gaps over density
ideals. A pregap A, B in the quotient over Z4 (given by I, ¢, for n € N) is
simple if there are submeasures 0., 7., concentrating on I, such that 4 = Z,
and B = Z,. If A,B and A', B’ are pregaps in the same algebra, we say that
A,B is included in A',B' if A C A’ and B C B'. Fix a generalized density
ideal Z4 with witnesses ¢, and I, n € N, throughout this section.

THEOREM 2.1: Every analytic Hausdorff pregap in the quotient over any Z4 is
included in a simple pregap.

Proof: Both A and B are analytic P-ideals. By [16], A = Exh(c) and B =
Exh(7) for some lower semicontinuous submeasures o and 7. Define o,, and 7,
by

om(C) =0(CnNIy) and  Tp(C)=T1(CNIy),

and let A' = Z,, B = Z,.
CLAIM 2.2: We have A' O A and B' 2 B.

Proof: For A" D A it suffices to prove that sup,, o < o. But this follows
from o, < ¢ for all m. The proof that B’ D B is analogous. 1

CLAIM 2.3: The families A" and B’ are orthogonal over Zy.

Proof: 'We need to check that A’ N B C Z;. Assume this fails, and fix X €
(A'NB')\ Z4. Let Xy = X NIny. Since X ¢ Z4, there is an € > 0 such that
ém(Xm) > ¢ for infinitely many m. We may assume this holds for all m. If we
write
Io=|J In, Xe=XnlIe,
meC

then for every infinite C' C N we have X¢ ¢ Z,4. Since ANB C 24, we have
Xc ¢ AN B for every such C. We may find an infinite Cy and Q € {A, B} such
that {D € [Co] : Xp ¢ Q} is dense in [C]¥° (dense in the forcing sense—every
set has an infinite subset in this set). We may assume that @ = 4 and (since
A is hereditary) that X N Ip ¢ A for all D € [Co]%°. For D C N let

ap = limkinfa(XD \ k)
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and note that ap > 0 since Xp ¢ A. Since C C* D implies a¢c < ap and
([N}, D*) is countably directed, for some C; € [Cp]*0 we have ap = ac, =6
for all D € [C1]%. By the above § > 0.

But o, (X) = 0(X;n) — 0 as m — 00, so we can find C; C C; such that
Y mec, 9(Xm) < 6/2. Then 0(X¢,) < §/2, a contradiction. |

By the above claims, A’ and B’ form a simple pregap that includes A, B.
Clearly, if A, B is a gap then A’, B’ is a gap as well. |

By the following result, analytic Hausdorff gaps over EU-ideals (if they exist)
must be rather different from known analytic Hausdorff gaps (see the proof of
[4, Lemma 2]).

THEOREM 2.4: Assume Z, is an EU-ideal and A, B is an analytic Hausdorff
pregap in its quotient. Then every infinite Y C N has an infinite subset X such
that A, B is separated on |J,,c x In-

Proof: Assume A, B is an analytic Hausdorff gap over Z,. By Theorem 2.1 we
may assume A, B is a simple gap given by submeasures o,,,7,, (m € N). Since
P(N)/ Fin adds a selective ultrafilter without adding reals, and therefore without
splitting gaps, we may assume there exists a selective ultrafilter i concentrating

onY. Let
A= (gp(zn)) JU

and define vy on A as in Lemma 1.2. Identify D C N with the element
(DN I, :n €N)of [], P(In), and let

Au={Alu:A€ A} and By={Blu:BechB}

These two families form a pregap in A/Null(z). By Lemma 1.2, the algebra
A/Null(vy) is a measure algebra and therefore some [W]y, splits the pregap.
Let W, = W NI, and for each k define

X = {njo,(In\ Wy,) < 1/k and 7,(W,,) < 1/k}.

Then X}, € U for all k, and since U is selective we can find X € U such that
X \ Xy is finite for all k. Then X is clearly as required. |
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3. On quotients without analytic Hausdorff gaps

We prove that if an analytic P-ideal 7 is dense and does not have analytic
Hausdorff gaps in its quotient, then its restriction to some positive set is a
generalized density ideal. This improves the main result of [4] that every dense
F,; P-ideal has such a gap in its quotient since a dense generalized density ideal
cannot be F,. To this effect we prove a  slight
strengthening of [4, Lemma 2.

LEMMA 3.1: Assume I = Exh(¢) is a dense analytic P-ideal and I; (i € N) are
finite pairwise disjoint sets such that for some ¢ > 0 and a > 0 we have
(1) (Vn)(VS C U2, L) (Vi > n)o(I; \ S) <e
= (3B C S)(Vz)d)(B NL) < 1/nA¢(B) > a)).
Then there is an analytic Hausdorff gap over T.

Proof: By replacing ¢ with ¢/a we may assume a = 1. Recursively find an
increasing sequence ny (k € N) so that for every k we have (let Ji = [ng, ng41))
(2) (VS C Uiy, I)(Vi € Ji)o(Li\ S) < e
= (IB C S)(Vi)(¢(BN L) < 1/k%) A ¢(B) > 1).
If ny,...,ny are as required, let T' be the family of all pairs (S, p) so that p > ng,
S C U, L ¢(I;\ S) < ¢ for all i € [ng,p], but for every B C S such that
(Vi)¢(B N I;) < 1/k* we have ¢(B) < 1. Order T by (S,p) < (U,1) if and only
ifp<land UNI =SnNI; for all i <p. Then T is a finitely branching tree.
An infinite branch of T would give some S contradicting the assumption (2),
since ¢ is lower semicontinuous. By Konig’s lemma,

ni+1 = sup{p + 2|3(S,p) € T}

is finite and satisfies (2). From this point on we follow the proof of [4, Lemma
2] rather closely.

For A C N and n € N define submeasures a,(A) = |{j € Jn : ANT; # 0}
and f,(A) = supj;c;, #(ANI;), then let

a(A) = Z # and  B(A) =supn- F,(A).

n=1 neN
Both a and 8 are lower semicontinuous. We will prove that A = Exh(a) and
B = Exh(8) form an analytic Hausdorff gap. Since both are clearly analytic

P-ideals, we need only prove that A and B are Exh(¢)-orthogonal and that they
are not separated by a single set over Exh(¢).
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In order to prove A and B are Exh(¢)-orthogonal, note that for A, B C N we
have

HANB) <Y ¢anBnl)_ B)<Y a"f;“) -(n- Bu(B)) < a(A) - B(B).
n=1 n=1

If A€ Aand B € B, then a(4) < 00 and limp 00 B(B\ U, Jn) = 0, thus by
the above limy_,o, #((AN B)\ [1,{)) =0, and AN B € Exh(¢), as required.

Assume A and B are separated over Exh(¢) by C C N. Then A\ C € Exh(¢)
and BN C € Exh(¢) for all A € A and all B € B. We claim that

(3) limpoo SUPm>n,j€dm o(I; \C)=0.

Otherwise, we may find an infinite X C N, ¢ > 0, and a ‘choice function’
f € Ilhex Jn such that

¢(If(n) \C) > &
for all n € X. We may furthermore shrink X so that 7 ., 1/n < co. Let
A = Unex Irmy \ C; then a(A4) < 3 . 1/n < oo, thus A € A. Note that
ANC = 0. However, for n € X we have ¢(ANU;c; L) > (AN Ifrny) > €,
therefore A ¢ Exh(¢), contradicting the assumption on C.

By (3), for all but finitely many n we have sup;c; #(I; \ C) < e. By (2),
for each such n there is B, € C N{J;c; I such that ¢(B, NI;) < 1/n? and
#(By) > 1. Then B = J,,.y By satisfies B C C and n-f,(B) < 1/n. Therefore
B ¢ B, yet B ¢ Exh(¢), a contradiction. This completes the proof. ]

ProrosITION 3.2: If T is an analytic P-ideal whose quotient does not have
analytic Hausdorff gaps, then the restriction of 7 to some positive set is a
generalized density ideal.

Proof: By [16] fix a lower semicontinuous submeasure ¢ such that Z = Exh(¢).
Fix a partition of N into intervals I; (¢ € N) so that inf; ¢(f;) > 1. The
conditions of Lemma 3.1 fail when @ = € = 1/m for every m € N. Hence we
may assume that for every m € N there are n = f(m) and S C [J;2 f(my Li such
that (Vi > f(m))¢(L;\S) < 1/f(m)and if B C S is such that ¢(BNI;) < 1/f(m)
for all 4, then ¢(B) < 1/m. Fix § > 0 so that < inf; ¢(I;). We may assume
f(m) > m/é for all m. For k € N pick S C Uio.i_f(zk) I; so that ¢(I;\ Sk) < 2755
for all i > f(2%) and

(VB C Sp)(Vi)p(BN L) < 1/f(2%) = ¢(B) < 27%.

Let S, = S UL and § = (2, L. Then ¢(I; \ S) < 6 for all 4,
therefore S is Z-positive.
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We claim that {A C S|A € I} = {A C S|limsup; (A N I;) = 0}, and
therefore the restriction of 7 to S is a generalized density ideal.

It will suffice to prove that if ¢(ANI;) approaches zero then A € 7. Fixm € N.
Find k such that ¢(ANL) < 1/f(2™) for all i > k. Then (;ﬁ(A\Uf=1 Ly<2 ™
and therefore A € Exh(¢). ]

4. Concluding remarks

The question whether there are analytic Hausdorff gaps over Zy remains open.
We record two of its equivalent reformulations. For terminology see [3].

PROPOSITION 1: Let T be an analytic ideal. The following are equivalent.
(a) There are analytic Hausdorff gaps over I.
(b) Every Baire monomorphism of the quotient over I into an analytic
quotient preserves all Hausdorff gaps.
{c) Assuming OCA and MA, every monomorphism of the quotient over T into
an analytic quotient preserves all Hausdorff gaps.

Proof: Each one of (b) and (c) is equivalent to (a) by {3, Proposition 5.9.1 and
Proposition 5.9.4]. These equivalences are also implicit in [20]. |

Let us repeat [4, Question 9] (see [4, Lemma 2] for a partial answer).

QUESTION 4.1: Assume a dense analytic P-ideal is equal to Exh(¢) for a lower
semicontinuous submeasure satisfying ¢(N) = oco. Is there an analytic Hausdorff
gap in its quotient?

A simple argument using the ideas from [5, Proposition 3.3 (1) and (2)) shows
that if Zy = Exh(¢) for a lower semicontinuous ¢ then ¢(N) < oo.

Theorem 1.3 implies that P(N)/ 2, is a proper forcing notion. The question
of properness of quotients P(N)/Z as forcing notions, initiated by Balcar, has
recently attracted considerable attention. Balcar, Hernindez Herndndez and
Hrusék ([1]) proved that P(Q)/ NWD(Q) is proper and adds only Cohen reals.
(Here NWD(Q) stands for the F,; ideal of all nowhere dense subsets of the ra-
tionals.) Motivated by [5], Steprans ([17]) has defined a family of 2" coanalytic
ideals whose quotients are pairwise nonequivalent proper forcing notions, each
one being an iteration of a Sacks-like forcing and P(N)/ Fin. Hrusdk and Zaple-
tal ([12]} proved theorems relating forcings P{N}/Z with more familiar forcings
of the form Borel/J for a o-ideal J in a spirit similar to Theorem 1.3. They have
also constructed an analytic P-ideal Z such that the forcing P(N)/Z collapses
N, answering a question from an earlier version of this paper.
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